Echocardiography Segmentation with Enforced Temporal Consistency

Nathan Painchaud^{1,2} Ph.D. student in Computer Science

¹Département d'informatique Université de Sherbrooke ²CREATIS INSA Lyon

3rd LabEx PRIMES Industry Day, Lyon, 20 June 2022

Academic Background

B.Sc. + M.Sc. Computer Science Université de Sherbrooke (2016-2019, 2019-) M.Sc. Advisor: P.-M. Jodoin M.Sc. Subject: Cardiac Segmentation with Anatomical Constraints

• Joint Ph.D. Computer Science

Université de Sherbrooke / INSA Lyon (2020-2023) Advisors: P.-M. Jodoin, O. Bernard, N. Duchateau Subject: Hypertension Characterization using Echocardiography
 Introduction
 Context
 Proposed Framework

 0
 0
 00000

Current State of Echocardiography Segmentation: The Good

Automatic 2D+time echocardiography segmentation using deep neural networks:

✓ Intra-observer variability

[Wei et al., MICCAI 2019]

 Introduction
 Context
 Proposed Framework

 ○
 ○
 ○○○○○○

Current State of Echocardiography Segmentation: The Bad

Automatic 2D+time echocardiography segmentation using deep neural networks:

🔀 Failures on individual frames

Example of degenerated frame in echo. sequence

X Temporal consistency

roduction	Context ⊙●	Proposed Framework

Path to Clinical Use

• Methods' clinical relevance measured by impact on ejection fraction estimation

Ejection Fraction

Source: Emory University

Source: American Heart Association

Context Proposed Framework

Path to Clinical Use

Introduction

- Methods' clinical relevance measured by impact on ejection fraction estimation
- Physicians use measures over time to guide diagnosis (e.g. GLS)

[Abou et al., Heart 2020]

What?

Add a hard temporal consistency constraint to echocardiography segmentation

What?

Add a hard temporal consistency constraint to echocardiography segmentation

How?

What?

Add a hard temporal consistency constraint to echocardiography segmentation

How?

Define temporally inconsistent segmentations based on shape attributes variations

What?

Add a hard temporal consistency constraint to echocardiography segmentation

How?

- Define temporally inconsistent segmentations based on shape attributes variations
- Learn an interpretable representation of cardiac shapes that models the shape attributes

What?

Add a hard temporal consistency constraint to echocardiography segmentation

How?

- Define temporally inconsistent segmentations based on shape attributes variations
- Learn an interpretable representation of cardiac shapes that models the shape attributes
- Leverage the representation to post-process temporal inconsistencies in echocardiography segmentations a posteriori

Cardiac Shape Attributes

Left ventricle area

Define (7) shape attributes computable from segmentations

Identify variation thresholds from reference segmentations

Myocardium area

Y center of mass

Cardiac Shape Attributes

- Define (7) shape attributes computable from segmentations
- Identify variation thresholds from reference segmentations

Cardiac Shape Autoencoder

- AR-VAE¹ to disentangle shape attributes:
- 1 shape attr. \leftrightarrow 1 latent dim.
- + residual dimensions

¹[Pati *et al.*, Neural Comput & Applic 2021]

Temporal Regularization Framework

- Perform 2D+time segmentation using a black-box method
- Smooth temporal inconsistencies in the latent space

Temporal Regularization Framework

- Perform 2D+time segmentation using a black-box method
- Smooth temporal inconsistencies in the latent space

Results

Segmentations after temporal post-processing:

🗹 Improved accuracy across cycle

Degenerated frame smoothed using neigh. frames

✓ Temporal consistency

Post-processing and latent manipulation results: https://youtu.be/rBUx4J0z-70

Thank you for listening! Questions?

CRSNG Québec 🗄 🗄

Fonds de recherche – Nature et technologies Fonds de recherche – Santé Fonds de recherche – Société et culture

Supplementary Materials: Videos

- Temporal regularization results: https://youtu.be/098NddEb2_k
- Latent attribute manipulation: https://youtu.be/_qb9muKyMIQ

TABLE II: Temporal consistency of SOTA segmentation methods, with and without our temporal regularization. [Left] Number of sequences with at least one temporally inconsistent frame w.r.t its neighboring frames, out of a total of 98 sequences. [Right] Ratio between the Laplacian of an attribute at a given frame, as defined in eq. (3), and the maximum threshold above which the value for that attribute are considered temporal inconsistent. The ratio is averaged over all attributes and all frames, regardless of whether they are temporally consistent or not.

	Original	Gaussian filter	VAE	Cardiac AR-VAE		
Methods				-	Temp. reg. attrs.	Temp. reg.
CLAS [1] DeepLabv3 [10], [11] ENet [12], [13] LUNet [7] U-Net [5], [6]	68 / .211 98 / .879 98 / .700 98 / .594 98 / .562	41 / .143 86 / .237 85 / .238 79 / .214 83 / .218	56 / .199 98 / .871 98 / .681 98 / .591 98 / .558	54 / .212 98 / .892 98 / .655 98 / .641 98 / .584	1 / .083 81 / .277 67 / .221 61 / .220 53 / .198	0 / .069 1 / .125 0 / .114 0 / .113 0 / .110

Segmentation Accuracy Results

TABLE III: Accuracy of SOTA segmentation methods, with and without our temporal regularization, on all frames of the full cycles from the CAMUS dataset. [Left] Average Dice score and [Right] Hausdorff distance (in mm).

Methods	Original	Gaussian filter	VAE	Cardiac AR-VAE		
				-	Temp. reg. attrs.	Temp. reg.
CLAS [1]	.953 / 4.4	.953 / 4.3	.953 / 4.0	.953 / 4.0	.953 / 4.0	.952 / 4.0
DeepLabv3 [10], [11]	.946 / 4.8	.951 / 4.4	.945 / 4.8	.945 / 4.8	.949 / 4.4	.951 / 4.2
ENet [12], [13]	.943 / 5.1	.946 / 4.8	.943 / 4.9	.944 / 4.8	.947 / 4.5	.949 / 4.3
LUNet [7]	.947 / 4.6	.951 / 4.3	.947 / 4.6	.947 / 4.6	.950 / 4.3	.952 / 4.1
U-Net [5], [6]	.951 / 4.3	.954 / 4.0	.951 / 4.3	.950 / 4.3	.953 / 4.1	.955 / 3.9

TABLE IV: Clinical metrics of SOTA segmentation methods, with and without our temporal regularization. [Left] MAE on the 2D ejection fraction (EF) computed from A4C segmentations. [Right] Number of frames with anatomical errors, as defined in [12], out of a total of 4531 frames from all frames across all sequences.

	Original	Gaussian filter	VAE		Cardiac AR-VAE		
Methods				-	Temp. reg. attrs.	Temp. reg.	
CLAS [1]	4.2 / 6	4.6 / 2	4.3 / 1	4.1 / 1	4.1 / 0	4.0 / 0	
DeepLabv3 [10], [11]	2.8 / 12	2.7 / 13	2.9 / 1	2.7 / 3	2.7 / 3	3.6 / 0	
ENet [12], [13]	3.2 / 11	2.9 / 20	3.4 / 5	2.9 / 0	2.9 / 0	3.3 / 0	
LUNet [7]	3.1 / 11	2.7 / 8	3.1 / 0	2.7 / 1	2.8 / 1	3.6 / 0	
U-Net [5], [6]	2.7 / 1	2.9 / 6	2.9 / 6	2.8 / 3	3.0 / 0	3.8 / 0	

- N. Painchaud, N. Duchateau, O. Bernard, and P.-M. Jodoin, "Echocardiography Segmentation with Enforced Temporal Consistency," *in press*, IEEE TMI, May. 2022.
- N. Painchaud, Y. Skandarani, T. Judge, O. Bernard, A. Lalande, and P.-M. Jodoin, "Cardiac Segmentation With Strong Anatomical Guarantees," IEEE TMI, Nov. 2020.
- N. Painchaud, Y. Skandarani, T. Judge, O. Bernard, A. Lalande, and P.-M. Jodoin, "Cardiac MRI Segmentation with Strong Anatomical Guarantees," MICCAI 2019.